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4 6    HAZARDS TO PERSONNEL FROM AIR BLAST 

explosions were better understood.     Since that time    n „echan- 

rllrS.«^^.^^ -   TutüoTZsl "own „ni,ue environ- 

which may dissipate the energy of the blast "*™ °*t
r^latlonal ,act0ra i„- 

ss rn s sssÄJrs; f£ v=b sa SETA 
United set of blast damage criteria will be J"^ *ere     ™^°t and leJel 

"receiver" will be assumed to £ »«£™8 in £££«££„ re£lectcd wava 

arv effects  involving fragment impact by missiles  from theexp *      lerated 

Abwich Ät^e Ä5i==rS.rbe disced in 
Chapter 6. 

A 6.1    Primary Blast Damage 

Priory blast effect    are associate.1-£^^^^^^'«£7^ 

s^^SJSÄ «f~ «i-aS^ SÄrs. 
pressure after arrival of the bias: wave «* *%£™!™B°a Bajor role (Refs. 
(Ref. 4.61). Specific impulse of the ""' ™£ *^° a^tent o£ biast injury 
4.62 and 4.63).  Other parameters which *e"™1™ ™ f„f animal, and possibly 
are the ambient atmospheric pressure, the sUe «™ '"«f°;reIlcM in de„sity of 
age. Parts of the body where ther«, are th greatest diH«     (Re£s ^ 

I*^"and1 tos" •SL^'ii^SiSU tissues of the lungs are more sus- 
ceptible to primary blast than any other vital organ (Ref. 4.66). 

Pulmonary "injuries directly or indJ«"ly cause „any of the patbophysi- 

doglcal effects of blast in ury (Ref 4 67).  Injuri = £'   /(Ref. ,.„,, 
hemorrhage and edema (Refs. 4.61 and 4 67)  ™P»"       (  f 4 6l)  losa 
air-embolic insult to the heart and «*"£""£!'£"foci. or fine scars, 

and various other portions of the body (Ref. 4.61). 
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tent of damage from the blast wave are the ^«^J1^    including its 
ambient atmospheric pressure, and the type °f ^imal   J    nearb object8 

mass and geome trie °rientatio n r el. tive "f*™*^  later »!„, et al. 
(Ref. 4.62). Although Richmond, et al. (Ref. 4•«>        tendency of the 
Ref. 4.62), both from the Lovelace foundation, "9f"" ?;uratlon Jla8t 
lethality curves to approach isopressure lines for long "        duration 
waves, their lethality curves demonstrate dependence on .pr.«     ^^ 
alone. Since specific impulse is dependent onpressu ^    o_ 

pressure-impulse lethality or survifbi^\'"™" *P*urves to approach asymp- 
priate. The tendency for pressure-impuI«« lethal*£ <U™^thema

PP
cal ^mt 

totic limits is also very aesthetically *W»l£*™£a\  at . specified dis- 
of view. Also, since both pressure an^f Erectly using methods described 
tance from most explosions can be «^^^at pressure-impulse lethality 
in this document, it is especially •P^^J^"^ done and is described 
(or survivability) curves be developed  This has be        here ag Figure 
in Reference 4.59. These curves and their use are r P 

4.68. 
i n„„ iauo in such a manner that only the Simplifying Lovelace's scaling laws in such a at fche 

human species or large animals are considered,   one 
following relationships or scaling laws. 

1.    The affect of incident overpressure is dependent on the ambient 
atmospheric pressure.    That is, 

p   .Is. (*-70> 
s      P o 

where P, is scaled incident peak overpressure, Ps is peak inci- 
dent overpressure, and Po is ambient atmospheric pressure. 

2 The effect of blast wave positive duration is dependent on ambi- 
ent atmospheric pressure and the mass of the human target. That 

is, 

Tn 1/2 

T_
TPQ (4.71) 

T    1/3 
m 

where T is scaled positive duration, T is positive duration, and 

m  is weight of human body. 
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3. Impulse is can be approximated by 

*.- 2 

V (4.72) 

Equation (4.72) assumes a triangula*: - ^ape jnd J^™^ 

from an injury standpoint,  or "^ ^ °^e^fic impulse required for 
square wave shapes because it und«"^f f ^'^ approximation for "short" dur- 
a certain percent lethality.  It is also a close pp^  ^ ^ ^ peak QVer. 
ation blast waves which characteristically ha^       he total waVe shape 

arrive at a scaling law for specific impulse. 

1-- (4.73) 
i -7*T 

s 2 s 

uhere T   is «.1- specific impulse.    Fro. Rations (,.71),  («.7», and  C*.73>      J 

_    1 
s 

Ps^_ (4.74) 
1 

Pm 
r 

1    _ 2       1/2 1/3 

>r from Equation  (4.72) 

is (4.75) 
is " —1/2  1/3 D        m 

*o 

ttu.. as indicated by Elation («-»^«^^'Llrt«^. " ^"^ 
on ambient atmospheric pressure and  the mass of   the  nu 

Reconstructed curves  from Reference 4.59 are .,,0™ ^J^re 4  68       It 

should be noted  that  these curves «'""«'»^^^"^«"«vlior..    Pre- 
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aUitudes with different atmospheric: jr...ur« •«^^ and specific im- 

human bodies. Once one det^"^^f ^g Equations (4.70) and (4.75) 
pulse for an explosion, they can * ™J«° ^sf gfor\he scaling can be acquired 
Vhe proper ambient atmospheric pressure to use       decreases with increas- 
fromVgure ..69, which shows how a mo pheric pr.-.« ^ ^ weigh    d in 
ing altitude above sea level <*«•*;"'•   composition of the particular 
the scaling is determined by the demographic camp babies, 
£aTndeAnvestigation.  It is recommen ed tha 11»^ ^ ^  ^ 

55 lb for small children 121 ^«^lies  in\his case are the most suS- 
It should be noticed that the smallest u 
ceptible to injury. 
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EXAMPLE PROBLEM 4.14 

pR0BLEM - Assess lung damage to humans at an appropriate distance from a given 

. -  explosive source. 

GIVEN: VJ ■ explosive charge weight 
   R « distance from center of explosive charge 

Altitude (no symbol) 
m «= weight of body of human subject 

FIND:  Probability of survival 

REFERENCE 
SOLUTION-  1. Determine peak incident overpressure  — 
SStSliiL.       and specific impuise is for given 

charge weight W and distance R rig.  . 
2. Determine ambient atmospheric pres- ^ ^ 

sure from altitude 
3. Calculate scaled incident overpres- (4.70) 

sure Ps 
4. Choose weight of the lightest human 

exposed at distance R .„  » 7n 
5. Calculate scaled specific impulse is Eq. </»./:>, 
6. Plot Ps and  is and determine proba- A6g 

bility of  survival 

CALCULATION 

GIVEN:    W «= 100  lb 
"      R = 100  ft 

Altitude - 4000  ft 
m - 130 lb 

FIND:       Percent  survival 

SOLUTION:     1.     R/W1/3 = 100/1001/3  - 21.5 ft/lb1^ 
 " " Enter Figure 4.5 and read Pg - 1.» psi 

and  i /VT/J - 2.55 X 10       psi-sec/lb 
s 

"Unseale" to determine  i 

*s     . wl/3 . 2-55 x 10"
3 X 101/3 - 5.49  X 10'3 psi-sec 

w 
2.    From Figure 4.69  for 4000  ft  altitude, 

p    « 12.6  psi 
o 
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3. From Equation (4.70), 
P - 1.8/12.5 - 0.144 
s 

4. Given m - 130 lb 
5. From Equation (4.75), .^2 

T   __^L— - _J^9JL10±- - 1.08 X IQ'3 PSl 1/3
3eC 

'^^V75  12.61/2X1301/3 lb1/3 

6. From Figure 4.68, enter with Pg = 0.144 and 

i - 1.08 X 10-3. The point lies well below 
g 
the threshold for lung damage.  So, there is 
no injury and survival is 100% 

^ 
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A.6.2    Tertiary Blast  Injury 

act vitTTTinn^iy-^^^ and subse- 
l.ted.    Tertiary blast da«.ge involves this wholJbody        P^ ^^ ^ 
quent decelerative  impact  (Ref. *•«-).    ™~* ° a,  *£    k 68).    The extent of 

body involved  (Ref. A .61) . 

Althou8h the head ^ri^\?llZ°l£l°A ^ri"oSf ^ 

li'tSi da^merla should he hased on sUulH=;=^ 

and random body impact orientation, will be considered. 

Because of  the many ^^^^M^^f^ll^^lJ^^ 
assumptions will be made.    First •* f i'^^iS.^8^damaging case 
occur during decelerative impact »^ * ha'd ^[^ onto only hard surfaces 
(Ref. 4.69).    Another assumption is that    since imp velocity. 
is being considered,   translatxon damage will depend only °    J        considering 
This  is,  impacting only one type of »»^^"äJa Lsu^lon, however,   is 

^"EtSJ^iS wJenh:nbe0dcyonsid^rgs STtn. lompressib'lity'of various por- 
tions of the body can vary considerably. 

Whit. (Refs. A.61 and 4.62)   and Clemedson    et: al     (Ref    4.69)     agree^ 
that the tentative «Iteriaf«  ternary da^ge^decelerati p    ^^ 
head should be  those presented in Table 4 11.    ^      [ &re  summarized 

f^:ti?uirur^z^^^ IL^^ *-*• velocity 
criteria  for each  type of impact condition are identxcal. 

i     (vof    L  «m have developed a method  for predicting the Baker,   et al.   (Ref. 4.59) *»ave deve    P ions which will  trans- 
blast  incident overpressure and  specific   impulse preSented  in 
late human bodies and  propel  them at  the  crltica ion curves  are  repro- 
Tables A.11 and 4.12.    This method and associated predict 

duced here. 

FlE„re 4.70  contains the pressure-seeled Impulse ^^°f Äf 
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Table A.11 Criteria For Tertiary Damage 
(Decelerative Impact) To The Head 
(References A.61, A.62, and A.69) 

Skull Fracture Tolerance 

Mostly "safe,r 

Threshold 

50 percent 

Near 100 percent 

Related Impact Velocity 
ft/sec  

10 

13 

18 

23 

Table A.12 Criteria For Tertiary Damage 
Involving Total Body Impact 

(Reference A.62) 

Total Body Impact Tolerance 

Mostly "safe" 

Lethality threshold 

Lethality 50 percent 

Lethality near 100 percent 

Related Impact Velocity 
ft/sec  

10 

21 

5A 

138 
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lmpulSe coitions retired to produce * ^^[«^ ^evel. 
r „  -r lot-Vi^litv from whole body impact  {.bee  xacne H.X«./  =■- 

Tu^s Kr otnorSHSe'rd°i£for only sUghtly fro. the see Xevel curve,. 
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EXAMPLE PROBLEM 4.15 

PROBLEM - Predict possible tertiary blast damage to humans at a specified dis- 
-  tance from a given explosive source. 

GIVEN: W = explosive weight 
R = distance from center of explosive charge 
m = weight of body of human subject 

FIND:  Probability of injury 

SOLUTION:  1. 

2. 

Determine peak incident overpressure 
Ps and specific impulse is for given 
charge weight W and distance R 
Determine the lightest representative 
weight of an exposed human, and calcu- 

,     .       4  / 1/3 
late ic/m 

1/3 Locate P and i /m   on graphs for 
s     s 

skull fracture and lethality for whole 
body translation, and read impact velo- 
cities 
Determine degree of injury for appro- 
priate impact velocities 

REFERENCE 

Fig. 4.5 

Fig. 4.70 & 
Fig. 4.71 

Table 4.11 

CALCULATION 

GIVEN: W = 100 lb 
R = 100 ft 
m = 130 lb 

FIND:  Tertiary blast injury, based on skull fracture 
and whole body translation 

SOLUTION: R/W173 = 100/100173 - 21.5 ft/lb1/3 

Enter Figure 4.9 and read P = 1.8 psi and 
5 

i /VL/2  = 2.55 X 10~3 psi-sec/lb 
s 
"Unscale" to determine i 
i 8 

-J73 ' W1/3 = 2.55 X 10"3 X 1001/3 

Given m - 130 lb.    Calculate 

ig/m1/3 - 1.18 X 10_2/1301/3       "3 

1.18 x 10      pai-rsec 

- 2.33 X 10~3 psi-sec/lb1/3 

Change  1-15 August  1981 4-174 



3. Enter Figure 4.70 with Ps - 1-8 and 

i /m1/3 - 2.33 X Hf3. This is off the left side 

of the Figure, but well below the lowest curves 
for skull fracture.  So, V « 10 fps. Enter Fig 
A 71 with the same numbers. Again, V « 10 tps 

L      Referring to Table 4.11 for correlation of velo- 
4' ciies with injury, we find that for either the 

skull fracture or whole body impact criteria the^ 
impact velocities are well below the mostly safe 
velocities. So, no injury would occur. 
NOTC: Had the values for ordinate and abscissa in 

Figures 4.70 and 4.71 been Pg - 1 psi, i-J*        ' 

1 psi-sec/lb1/3, the velocities for s^* frac£u" 
velocity would have been V - 15 fps, and for whole 
velocity w°u    v - 13 fos  Skull fracture injury 

proLbluty wSdVlIe".SUn threshold and 50%, 
vhüe lethality due to whole body translator.would 
lie between mostly "safe" and the threshold for 
iethat^y! So, the human would have a relatively 
high probability of skull fracture, but a low pro- 
bability of death. Whether this level of ^ury 
would or would not be acceptable could only be ad 
dressed in separate safety criteria. 

A_175        Change 1 - 15 August 
1981 



A.6.3 Ear Damage Due To Air Blast Exposure 

The ear, a sensitive organ system which converts sound waves into nerve 
impulses, responds to a band of frequencies ranging from 20 Hz to 20,000 Hz. 
This remarkable organ can respond to energy levels which cause the eardrum to 
deflect less than the diameter of a single hydrogen molecule (Ref. 4.70). Not 
being able to respond faithfully to pulses having periods less than 0.3 milli- 
second, it attempts to do so by making a single large excursion (Ref. 4.70). 
It is this motion which can cause injury to the ear. 

The human ear_is divided into the external, middle, and inner ear. 
The external ear amplifies the overpressure of the sound wave by approximately 
20 percent and detects the location of the source of sound (Ref. 4.70). Rup- 
ture of the eardrum is a good measure of serious ear damage. Unfortunately, 
the state-of-the-art for predicting eardrum rupture is not as well developed 
as that for predicting lung damage from blast waves. A direct relationship, 
however, has been established between the percentage of ruptured eardrums and 
maximum overpressure.  Hirsch (Ref. 4.67) constructed a graph similar to that 
shown in Figure 4.72 and concluded that 50 percent of exposed eardrums rupture 
at an overpressure of 15 psi. White (Ref. 4.61) supports this conclusion for 
"fast" rising overpressures with durations of 0.003 second to 0.4 second 
occurring at ambient atmospheric pressure of 14.7 psi. Hirsch (Ref. 4.67), 
also concluded that threshold eardrum rupture for "fast" rising overpressures 
occurs at 5 psi, which is also supported by White (Ref. 4.61) for the range 
of duration and at the atmospheric pressure mentioned above. 

At lower overpressures than those required to rupture eardrums, a tem- 
porary loss of hearing can occur. Ross, et al. (Ref. 4.70), have produced a 
graph of peak overpressure versus duration for temporary threshold shift (TTS). 
Below the limits of the graphs, a majority (75 percent at least) of those ex- 
posed are not likely to suffer excessive hearing loss. According to Ross, 
et al. (Ref. 4.70), their curves should be lowered 10 dB to protect 90 per- 
cent of those exposed, lowered 5 dB to allow for a normal angle of incidence 
of the blast wave, and increased 10 dB to allow for occasional impulses.  In 
sum, to assure protection to 90 percent of those exposed and to allow for nor- 
mal incidence to the ear (the worst exposure case) of an occasional air blast, 
their curves should be lowered 5 dB. 

Limits for eardrum rupture and temporary threshold shift, as presented 
above, are dependent on peak incident overpressure and duration.  Since speci- 
fic impulse is dependent upon the duration of the blast wave and since both 
peak incident overpressure and specific impulse at a specified distance from 
an explosion can be calculated using methods in this document, it is especially 
appropriate that pressure-impulse ear damage curves be developed from the pres- 
sure-duration curves. Assuming a triangular shape for the blast wave allows 
for simple calculations which are conservative from an injury standpoint. 

Change 1-15 August 1981 4-176 
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The ear damage criteria presented in Figure 4.73 were developed from 
the criteria for eardrum rupture developed by Hirsch (Ref. 4.68) and White 
(Ref. 4.61) and from the criteria for temporary threshold shift developed by 
Ross, et al. (Ref. 4.70).  Equation (4.72) was used to calculate specific im- 
pulse, and temporary threshold shift represents the case where 90 precent of 
those exposed to a blast wave advancing at normal angle of incidence to the 
ear are not likely to suffer an excessive degree of hearing loss. The thres- 
hold for eardrum rupture curve is the location below which no ruptured ears 
are expected to occur and the 50 percent of eardrum rupture curve is the 
location at which 50 percent of ears exposed are expected to rupture. 
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EXAMPLE PROBLEM 4.16 

PROBLEM - Find the probability of ear injury at a given distance from a speci- 
   fied explosive source. 

GIVEN: W « explosive charge weight 
R = distance from center of explosive charge 

FIND;  Probability of ear injury '        REFERENCE 

SOLUTION: 1. Determine peak incident overpressure 
Ps and specific impulse is for given 
charge weight W and distance R Fig. 4.5 

2. Determine degree of injury by plotting 
Ps and is on human ear damage curve Fig. 4.73 

CALCULATION 

= 100 lb (free air) GIVEN: W 
R = 100 ft 

FIND: Level of ear injury 

SOLUTION: 1. R/W1'3 - 100/100 1/3 a 1/3 
= 21.5 ft/lb ' 

Enter Figure 4.5 and read P * 
s 

> 1.8 psi 

and i /W1/3 - 2. 55 X IQ"3 psi- ■sec/lb1/3 
s 

"Unscale" to obtain i 
s 

1s  . „1/3  „ « „ ,„-3 „ ,„JL/3  , ,Q „ ,„-2 

^ 
3 W   = 2.55 X 10  X 100   = 1.18 X 10  psi-sec 

2. Plotting P and i on Figure 4.73, one 
s     s 

finds that the point lies well above the 
curve for TTS, but below the curve for 
threshold of eardrum rupture.  So, humans 
would suffer temporary hearing loss, but 
no serious ear injury. 
NOTE: When comparing ear injury, primary 
blast damage, and tertiary blast damage 
for the same source, as has been done in 
Example Problems 4.14, 4.15, and 4.16, one 
invariably finds that ear injury occurs at 
a greater distance than the other, more 
serious, types of blast injury. So, if 

Change 1-15 August 1981 4-180 



safety criteria include an ear damage limit, 
one can be assured that no more serious 
blast injury will occur at the distances 
corresponding to the ear damage limit. 
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